Pumping Oil
(Divide-and-conquer) The picture below shows an oil field with $m$ by $n$ cells. Assume that $n$ is a power of $2$ (i.e., $n = 2k$). The number in each cell is the amount of oil in the cell. We want to build two towers and drills to pump out oil. The input is given as an array A[1...m][1...n]
. We can pump out oil from the cells the drill goes through and cells between the end of two drills. The drills must be the same depth. The cost is the number of cells from which we pump oil out. The benefit is the amount of the oil pumped out minus the cost. For example, the benefit in the picture is (0 + 4 + 4 + 0 + 5 + 0 + 4) − 7 = 10
Divide and Conquer
Constraint: Assume that e - s
is power of 2
so, e - s
is always odd
.
Key idea
- Find left, right optimal values using recursive call
- Find cross optimal, it takes $O(rn)$.
- Find max(left, right, cross) to determine the optimal value of
A[:r+1, s: e+1]
For each row $r$ \(\begin{align} T'(r, n) &= 2T'(r, n/2) + O(rn) \\ &= O(rnlogn) \end{align}\)
So, $T(m,n) = \sum_{r=1}^m {T’(r, n)} = O(m^2nlogn) $
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import numpy as np
A = np.array([[0,3,4,0],[4,3,0,3],[4,0,5,3]])
print(A, 'of shape =',A.shape)
# Assume that e - s is power of 2 so, e - s is always odd.
def oil(A, r, s, e):
print('oil(r={}, s={}, e={})'.format(r, s, e))
# base case
if e - s == 1:
neighbor = A[:(r+1), s].sum() + A[:(r+1), e].sum() - 2*(r+1)
print('basecase! return {}'.format(neighbor))
return (neighbor)
mid = (s + e)// 2
left = oil(A, r, s, mid)
right = oil(A, r, mid + 1, e)
print('left={}, right={}'.format(left, right))
# cross case computed in O(rn) time
G = A[:(r+1), s: e+1].sum(axis=0)
max_left, max_right = -1e+8, -1e+8
for i in range(mid , s-1, -1):
cal = G[i] - (mid - i) - (r+1)
if cal > max_left:
max_left = cal
print('@ i={}, updated to {}'.format(i, cal))
for j in range(mid+1, e+1):
cal = G[j] - (j - mid - 1) - (r+1)
if cal > max_right:
print('@ j={}, updated to {}'.format(j, cal))
max_right = cal
print('max_left={}, max_right={}'.format(max_left, max_right))
return max(left, right, max_left + max_right)
def pumping_oil(A, r, m, n):
opt = 0
for k in range(r+1):
print('============= {} th row ============================'.format(k))
this = oil(A, k, m, n)
if this > opt:
print('update opt value to {}'.format(this))
opt = this
print('===================================================='.format(k))
return opt
1
2
3
4
[[0 3 4 0]
[4 3 0 3]
[4 0 5 3]] of shape = (3, 4)
1
pumping_oil(A, 2, 0, 3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
============= 0 th row ============================
oil(r=0, s=0, e=3)
oil(r=0, s=0, e=1)
basecase! return 1
oil(r=0, s=2, e=3)
basecase! return 2
left=1, right=2
@ i=1, updated to 2
@ j=2, updated to 3
max_left=2, max_right=3
update opt value to 5
====================================================
============= 1 th row ============================
oil(r=1, s=0, e=3)
oil(r=1, s=0, e=1)
basecase! return 6
oil(r=1, s=2, e=3)
basecase! return 3
left=6, right=3
@ i=1, updated to 4
@ j=2, updated to 2
max_left=4, max_right=2
update opt value to 6
====================================================
============= 2 th row ============================
oil(r=2, s=0, e=3)
oil(r=2, s=0, e=1)
basecase! return 8
oil(r=2, s=2, e=3)
basecase! return 9
left=8, right=9
@ i=1, updated to 3
@ i=0, updated to 4
@ j=2, updated to 6
max_left=4, max_right=6
update opt value to 10
====================================================
1
10
Leave a comment